登陆注册
5958200000036

第36章 原子钟的发明

大家知道,在计量单位制中,除了长度和质量外,还有一个基本物理量,那就是时间。

微波激射器发明后,人们已经认识到可以利用其极为精确的计时功能制造原子钟。原子钟的发明是在新长度基准之外又一件量子计量技术的成果。它使计时技术发生了革命性的变化。要知道,时间的计量对人类的生活有着不可估量的意义。

日出而作,日入而息,铜壶滴漏,日晷影移,这是原始的时间计量。古人就据此建立了各种可靠的计时标准。

在人类观察到的自然现象中,以天空中发生的现象为最明显,也最有规律,所以很自然地自古以来人们就以地球自转周期作为时间的量度基准,这就是所谓的太阳日。最初秒的定义就是1秒=1/86400平均太阳日。但是由于地球自转并不均匀也不稳定,1960年国际计量大会确认,把时间基准改为以地球围绕太阳公转为依据,即:把秒定义在1900年地球绕太阳沿轨道运行一周所需时间的1/31556925.9747。这一数据之所以有如此之高的精确度,是因为这个结果是通过为期数年的一系列天文观测获得的。

然而根据这个定义很难对秒本身进行直接比较。正好在这期间,时间和频率的测量技术有了很大发展,1967年第十三届国际计量大会重新规定了时间单位的定义:“秒是铯133原子基态的两超精细能级之间跃迁所对应的辐射的9192631770个周期的持续时间。”

这么精确的数据是从哪里来的?应该说:这是原子物理学工作者长期研究的成果,是40年代、50年代发明原子钟的重大收获。

大家知道,对于一个周期性系统来说,其周期与频率是互为倒数的。以周期作为时间计量单位实际上就是以频率作为计算时间的依据。原子在能量差为ΔE的两个能级之间跃迁时,将会放出或吸收电磁波,其频率ν=ΔE/h(h即普朗克常数)。如果能够控制原子只在某两个特定能级之间跃迁,就有可能获得与之相对应的特定跃迁频率。如果这一频率非常稳定,就有可能被选定充当原子频率标准。

我们从光谱仪就可以测出原子光谱每一根谱线的频率,不过,原子光谱的谱线往往不是一根线,而是由若干更细的线组成。只要光谱仪的分辨率提高就可以观察到,这叫做光谱的精细结构。实际上精细结构还可以再分解,如果有分辨率更高的光谱仪,特别是在磁场的作用下,可以进一步观察到精细结构里还有更精细的结构,这叫做超精细结构。原子光谱的超精细结构早在1928年就有人观察到了。实验表明,基态的超精细结构跃迁频率不易受外界磁场的影响,相当稳定,以之作为频率标准是适宜的。

早在1940年,美国物理学家拉比就预见到铯133的超精细结构有可能作为频率计量的基准。

铯133有三个特点:一是超精细结构的裂距量大,达9.2GHz,测量的精确度也很高,可达10-5。二是碱金属原子结构都很简单,属于单电子原子,和氢原子有类似性质,原子光谱的规律最明显,而铯是碱金属稳定元素中最重要的一员,原子质量大,则多谱勒频移小,谱线宽度随之减小,因此可得更高的精确度。三是铯在自然界中仅有一种同位素,即铯133(133Cs),这是最有利的条件。所以拉比首选铯作为原子钟的工作物质。

美国物理学家拉姆齐(N.F.Ramsey)当时正好在哥伦比亚大学随拉比做博士论文,题目是《用原子束方法研究分子的旋转磁矩》。他记得在拉比小组中曾讨论过用铯133的超精细结构测量频率的可能性。拉比还建议美国国家标准技术局研制原子钟,后因条件尚不成熟而搁置。

第二次世界大战中,由于雷达的广泛应用,微波电子技术有了长足进展,用感应法和吸收法相继发现了核磁共振,人们认识到,用原子钟来计时的时代已经不远了。

原子束实验装置素以结构复杂、设备庞大著称,因为它既需要加热,又需抽高真空,还要有强大的射频场和特殊要求的磁场,使分子束或原子束发射,聚焦、选场、激发和检测。怎样才能简化这些设备呢?这是物理学家大伤脑筋的问题。特别是为了减小谱线宽度,还必须采取某些特殊的措施,使事情更复杂化。根据理论分析,得知谱线宽度与振荡场区的长度成反比。这个振荡场区要求保持均匀的微波场和磁场。振荡场区的长度越长,谱线宽度就越窄,频率计量的精度就越高。但是,实践的结果并不尽如人意。振荡场区加长,又会遇到新的问题,射程长了,原子束的强度大减,而且难以保证磁场均匀,所以加大长度,谱线反而增宽。

拉姆齐和大家一样,也在为这个问题做各种探讨。他当时正在哈佛大学教物理光学课,正当他在为谱线增宽的问题苦思之际,迈克耳逊的测星干涉仪的设计思想启发他找到了一条绝妙的方法。

迈克耳逊的测星干涉仪是20世纪20年代初颇引人注目的一项成果。他在加州威尔逊山天文台的2.54米天文望远镜上加了两道反射镜,形成两翼,相距6米,利用两翼的光束互相干涉,从而测星体的角直径,结果把望远镜的角分辨率加大了几十倍,第一次测出了星体的角直径,解决了过去用望远镜一直没有解决的问题。相距6米的反射镜相当于把望远镜的口径加大6米,实际上即使成了这样庞大的望远镜,也可能无法保证干涉条纹的清晰度。后来,迈克耳逊的设计方案被人们写进了教科书,拉姆齐在教光学时当然会涉及这个问题。

可不可以也用类似的办法来改造原子束的振荡场呢?经过计算,证明在振荡场的两端用两条狭窄的振荡区即可代替整个振荡场,只要两端的驱动微波同相位,整个场的不均匀性就不会影响共振曲线的宽度,反而可以使宽度窄40%。这一设计思想立即使铯原子钟获得了成功的希望。1952年第一台应用分离振荡场方法的铯原子钟在美国国家标准技术局问世,频率宽度是原来的方法的十分之一,接着,英国国家物理实验室也于1955年建立了原子钟,3年后他们发表了精确的结果:铯133原子基态两个超精细能级间跃迁辐射频率为9192.631770MHz。这一频率后来在1967年被第十三届国际计量大会正式用来定义时间的基准。秒的新定义就是这样产生的。

同类推荐
  • 海洋馆漫游:海洋生物天地

    海洋馆漫游:海洋生物天地

    放眼全球,世界上最发达的国家都是海洋大国,经济最活跃的地区都在沿海地区。在当今国际社会,开发海洋、拓展生存和发展空间,已成为世界沿海各国的发展方向和潮流。海洋是一个富饶而未充分开发的自然资源宝库。海洋自然资源包括海域(海洋空间)资源、海洋生物资源、海洋能源、海洋矿产资源、海洋旅游资源、海水资源等。这一切都等待着我们去发现、去开采。青少年认真学习海洋知识,不仅能为未来开发海洋及早储备知识,还能海洋研究事业做出应有的贡献。
  • 海洋解密百科(奥秘世界百科)

    海洋解密百科(奥秘世界百科)

    本套书全面而系统地介绍了当今世界各种各样的奥秘现象及其科学探索,集知识性、趣味性、新奇性、疑问性与科学性于一体,深入浅出,生动可读,通俗易懂,目的是使读者在兴味盎然地领略世界奥秘现象的同时,能够加深思考,启迪智慧,开阔视野,增加知识,能够正确了解和认识这个世界,激发求知的欲望和探索的精神,激起热爱科学和追求科学的热情,掌握开启人类和自然的金钥匙,使我们真正成为人类和自然的主人,不断认识世界,不断改造自然,不断推进人类文明向前发展。
  • 青少年应该知道的通信

    青少年应该知道的通信

    本书主要内容包括:沟通之媒——通信岁月留痕——我国古代通信文明火种——国外古代通信“英雄迟暮”——载波通信信息快车——光纤通信等。
  • 学会节约每一滴水(星球保卫战)

    学会节约每一滴水(星球保卫战)

    关爱自然,热爱地球,爱她的青山绿水,爱她的碧草蓝天,爱她的鸟语花香……我们要真正学会保护地球,让我们手挽手,肩并肩,心连心,筑起一道绿色的环保大堤。捍卫资源,捍卫环境,捍卫地球,捍卫我们美好的家园吧!我们要更加自觉地珍爱自然,更加积极地保护生态,努力走向生态文明新时代,作为新时代青少年的我们,关注生态文明责无旁贷。
  • 日常小事皆学问

    日常小事皆学问

    科技人才的培养,基础在于教育。谁掌握了面向未来的教育,谁就能在未来的国际竞争中处于战略主动地位。青少年是祖国的未来,科学的希望,担当着科技兴国的历史重任。因此,把科技教育作为一项重要的内容,从小学抓起,为培养未来的人才打下坚实基础是势在必行。
热门推荐
  • 福妻驾到

    福妻驾到

    现代饭店彪悍老板娘魂穿古代。不分是非的极品婆婆?三年未归生死不明的丈夫?心狠手辣的阴毒亲戚?贪婪而好色的地主老财?吃上顿没下顿的贫困宭境?不怕不怕,神仙相助,一技在手,天下我有!且看现代张悦娘,如何身带福气玩转古代,开面馆、收小弟、左纳财富,右傍美男,共绘幸福生活大好蓝图!!!!快本新书《天媒地聘》已经上架开始销售,只要3.99元即可将整本书抱回家,你还等什么哪,赶紧点击下面的直通车,享受乐乐精心为您准备的美食盛宴吧!)
  • 良辰的美景

    良辰的美景

    夜良辰:我的生活是复杂的,但遇见她以后,我的生活变得简单了,那就是爱她。林美景:上帝是眷顾我的,一睁眼看见的就是他,这一生有他,足矣。L:她是我这灰暗世界里的唯一一束光,是上帝派来救赎我的,为了她,我甘愿抛弃我自己,变成他。
  • 悟空之后

    悟空之后

    穿越到异界的唐昊天发现,他这副身体内竟然有斗战胜佛孙悟空的一缕残魂。这股残魂已经不知道轮回了多少世,可是唐昊天还是在这股残魂里,读懂了孙悟空!读懂了孙悟空的身不由己和孤独!既然获得了他的残魂,那作为悟空之后,他自然有能力,按照孙悟空的性格,按照自己的性格活一次,命运,诸天神佛再不能左右于我!我命由我,定叫这日月换新天!
  • exo我们又见面了

    exo我们又见面了

    出生3个月的吴若馨因身体的异常被家人寄养在孤儿院。后来阴差阳错的认识了exo,但故事的情节总是不完美的,他们也一起经历了许多的坎坷。生离死别的考验也随之而来。第一次写文章希望大家支持,和关注。谢谢
  • 废柴逆天:狼君快到怀里来

    废柴逆天:狼君快到怀里来

    “本姑娘有飞天青凤青羽在上,狼犬之子白羽在下,五大美男左右护卫,你等奸诈小人速速纳命来!”“哼,那又怎样!”“青羽远程攻击,白羽近身格斗,五大美男乃是最绝美男计!而本姑娘,手执鸡腿回旋标,还怕打不过你?”“美男计?!”“哼,温柔冷酷腹黑暴力阳光五大美男齐齐勾引,看你哪里逃!”“确定要孤去勾引?”某男一脸黑线。“不不不不,你是我的!狼君快到怀里来!”
  • 三生梦之浮生尽

    三生梦之浮生尽

    第一世他是上古遗神,世间最后一位神--夜渊,心怀六界众生。她是上古遗族一叶浮萍,懵懵懂懂不韵世事。百仙宴上他们相遇,她仰望他。喜欢他。当着众仙表白。他淡漠不予理会。她陪他呆在清冷无比的离恨天,陪他看昆仑山的雪。只要有他的地方就能看到她。他教她法术,对她微笑。她以为他爱她,以为这样的日子会一直这样下去。直到神魔之域大开,魔界之人来袭。本文纯属虚构,请勿模仿。)
  • 星空系统

    星空系统

    带着系统穿到吞噬星空的故事。好了就样吧!
  • 苍穹降临

    苍穹降临

    苍穹裂,无上混沌器出世,神帝大战,血染苍穹!
  • 总裁独宠契约妻

    总裁独宠契约妻

    他们是别人眼中的模范夫妻,恩爱入骨,其实只不过是在演戏。沈先生有三不规则。一,不许触碰他。二,不许喊他老公。三,不许上床!那这个婚结个毛用?她不服,每天专心致志撩他,勾他,结果玩大了!沈先生邪魅一笑,“现在想到害怕,晚了!”
  • 火澜

    火澜

    当一个现代杀手之王穿越到这个世界。是隐匿,还是崛起。一场血雨腥风的传奇被她改写。一条无上的强者之路被她踏破。修斗气,炼元丹,收兽宠,化神器,大闹皇宫,炸毁学院,打死院长,秒杀狗男女,震惊大陆。无止尽的契约能力,上古神兽,千年魔兽,纷纷前来抱大腿,惊傻世人。她说:在我眼里没有好坏之分,只有强弱之分,只要你能打败我,这世间所有都是你的,打不败我,就从这世间永远消失。她狂,她傲,她的目标只有一个,就是凌驾这世间一切之上。三国皇帝,魔界妖王,冥界之主,仙界至尊。到底谁才是陪着她走到最后的那个?他说:上天入地,我会陪着你,你活着,有我,你死,也一定有我。本文一对一,男强女强,强强联手,不喜勿入。